Dietary cholesterol promotes repair of demyelinated lesions in the adult brain

نویسندگان

  • Stefan A Berghoff
  • Nina Gerndt
  • Jan Winchenbach
  • Sina K Stumpf
  • Leon Hosang
  • Francesca Odoardi
  • Torben Ruhwedel
  • Carolin Böhler
  • Benoit Barrette
  • Ruth Stassart
  • David Liebetanz
  • Payam Dibaj
  • Wiebke Möbius
  • Julia M Edgar
  • Gesine Saher
چکیده

Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system

Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axon...

متن کامل

Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.

Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...

متن کامل

N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions.

Discrete cellular microenvironments regulate stem cell pools and their development, as well as function in maintaining tissue homeostasis. Although the signaling elements modulating neural progenitor cells (NPCs) of the adult subventricular zone (SVZ) niche are fairly well understood, the pathways activated following injury and the resulting outcomes, are less clear. In the present study, we us...

متن کامل

Relationship between dietary virgin Olive oil on brain Cholesterol, Cholesteryl ester and Triglyceride levels and Blood Brain Barrier (BBB) permeability in a rat stroke model

Introduction: Recent studies suggest that dietary virgin olive oil (VOO) reduces hypoxia-re oxygenation injury in rat brain. We have attempted to determine the effect of dietary virgin olive oil on brain lipidomics and its relationship with brain edema in a rat stroke model. Methods: Five groups, each consisting of 6 male Wistar rats, were studied. The first and second groups (control and s...

متن کامل

Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells.

Experimental transplantation in rodent models of CNS demyelination has led to the idea that Schwann cells may be candidates for cell therapy in human myelin diseases. Here we investigated the ability of Schwann cells autografts to generate myelin in the demyelinated monkey spinal cord. We report that monkey Schwann cells derived from adult peripheral nerve biopsies retain, after growth factor e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017